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Introduction

A fundamental problem in population genetics is to describe the changes iri
the frequency of a gene over time due to systematic forces like selection, mutation
and migration. When the size of the given population is very large and the indivi- •
duals of the population mate at random, the change in the gene frequency is
deterministic and can be easily studied by simple algebraic principles. In such '
cases the population ends up either with the fixation of a favoured gene or with a
polymorphic state due. to the balancing of various forces. However, when the
population is small, consisting of a finite number of individuals, the gene frequency
is also subject to fluctuations over time due to random forces created by the random
sampling of gametes." The change in the gene frequency over time is then a stochas
tic process and can only be studied with the help of the mathematical and statistical
techniques used for studying a stochastic process. If the rate of change in the gene
frequency per generation is very small, the process is approximated by a continuous
stochastic process with gene frequency as a random variable lying between 0 and 1.
Moreover, in most of the cases encountered, the behaviour of the gene,frequency in a
generation depends only on its value ih the preceeding generation so that the process
is Markovian in structure. A Markov process, continuous in gene frequency as well
as in time parameter can best be studied with the help of differential equations intro
duced by Kolmogorov (1931). Making use of these techniques, Wright (1931) and
Kimura (1957) respectively gave the concepts of distribution of gene frequency and
probability of fixation of a gene. These concepts have proved fundamentals in the
theory of population genetics applied to finite populations. In particular, Robertson
(1960) made use of these concepts and developed a theory of hmits of response to
artificial selection with useful applications in animal breeding. When tlie changes in
the gene frequency over time are not small, these cannot be described by a continuous
stochastic process. The gene frequency is now a discrete random variable changing
by stepsbetween 0 and, 1 depending oij the,population size. The changes in the
gene frequency are therefore described exactly by a discrete Markov process with
discrete time pararneter;, Such, a process is often referred to as a finite Markov chain
and can be studied with the help of transition probability matrices as shown by
Narain (1969). Besides translating the concepts of distribution of gene frequency
and fixation probability into the transition matrix approach, Narain (19 69)
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introduced the concept of average time taken for the fixation of a gene. A general
theory of limits and duration of response to selection in finite populations was
developed subsequently by Narain and Robertson (1969). In this paper an
application of the theory to the case of selectionat a locus with two alleles, assuming
a constant population size, was also studied in detail. Later on, the effect of
dominance and recessive nature of the gene on the limits and duration of response
was investigated by Narain (1971). In this paper the estimates of genetic change per
generation were also obtained with the help of the limits and time taken to achieve
them. The transition matrix approach was further used to study the survival of
recessive lethals in small populations by Narain (1969) and later by Robertson and
Narain (1971). In the later paper, Monte Carlo methods were also used to investi
gate the effect of linkage on the survival of recessive lethals in small populations.

Apart from the above applications of the transition matrix approach to
specific genetic problems, a rigorous theory of this approach has not been discussed
so far. In this paper, therefore, the basictheory of this approach has been described
briefly with specialreference to the problem of genetic selection in finite populations.
In addition, the theory has been applied to study the effect of linkage on the prob
ability of fixation of a gamete in populations practising self-fertilization.

2. Transition Probability Matrix

Consider a finite population ofgametes of size 2A^and a single locus with
two alleles A and a. Such a population can assume (2A''+1) states Eq, E^^,

the j"' state Ei respresenting the state of i A genes and (IN—i) a genes. The

gene frequency of A, denoted by Xi for the population dn the state Ei can then take
values, Xi^ijlN, i=0, 1, 2N. The states E^ and E^j^ represent
the states of a and A genes entirely and therefore once the population assumes
these states, it gets fixed for either a oi A alleles, i.e., the gene frequencies
are andA:2^=l respectively. On the other hand, any state /=1, 2,

(2A^—1), represents a state segregating fpr ^ and a genes and therefore
once the population is in such a state, it has a possibility of moving from this state
to any other state. Then the gene frequencies of A and a, in this population,
are Xi and (1—X;) respectively. Thus a population of gametes of
size 2N with two alleles Aand a corresponds to a random walk with E^ and £'2^ as
absorbing states and Ei, i=l, 2, v...(2i\r-T-l) as transient states.. . , ,

Let Pij (fi, Q be the conditional probability that the population is in state
Ej at time «i, given that it was in state Ei at time ^2 (less then i.e. it represents the
probability of transition from Ei to Ej after a time ih—tz). Mathematically,
this means

•ftX'ij (x^Ej st ti/x^Ei at <2)5 (1)
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Let the process be homogeneous in time i.e. Pa (tj,, depends only on
the difference and not on ti and t^. We can then denote this probability
by representing theprobability that the population is in state Ej at time
greater than t, given that it was in state Ei at time r for t^O. This is known as
?-step transition probability from Ei to Ej so that one-step transition probability can
be denoted by Fij. Varying i and j from 0 to 2N in steps of 1, we get
(2N+ 1) X(2N -t-1) transition probabilities which can conveniently be represented by
matrices P and P(0 for one and ?-step transitions respectively. If all the genes are
either A or a.then for all t, q q and '
and ^ .will each be zero for }—\,2, ...(2iV- 1). Suppose we denote the matrix
of transition probabilities associated with transient states by Q and Q(z) respectively
for one and Z-step transitions. Further, suppose and P represent, respec

tively for one and ?-steptransitions, column vectors for transitions from a transient state
io E Similarly ^2N, and represent the corresponding column vectors for

Then P and P(0 can be written as

0"

transitions from a transient state to E,
'2N-

P-

- 1

P
O

^ .0

r 1

L 0

O' 0

Q P

O'

O'

Q(t)

O'

2N

1 -J

1

The elements of P(?) satisfy the condition

for all

IN

2 Pi/«=1 for all/
;=0

(2)

(3)

(4)

(5)

Since a. transition fram £4 to Ej after t steps means a transition from Ei to
in one step and then from to £•, in (?—1) steps, the probabilities of simulta

neous realization of these events are

i'«Pft,"-^'forA:=0, 1, 2, 3, 2N

Hence we have, the Chapman-Kolmogorov equation (Feller 1951)

IN

S Piu P./"'
k=Q

(6)
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The corresponding matrix equation is obtained as

. P(0=PP(<-1)

PO-2)

=P« (7)

Powering the P-matrix and assuming that inverse of (I-Q)exists we get the
following relations :

Q(0=Q*

^(0=(I-QO(I-Q)-'^

3. Probability of Fixation of a Gene

(10)

Let uU) be the probability that at time t, and not sooner, the population
with initial gene frequency of ^ as //2iV becomes fixed for^ ,and>t !7,(0 b^
probability Lt it has become fixed for Aby generation. Then, the probabilities
of fixation of AwUh initial gene frequency, Xi-H2N is given by

Uli) =k Ui{r) (11)
/•=!

Since fixation at time t in one generation means that transition from initialstate to the absorbing state takes place in one step, we have

C/<(l)=Wi (1)=^,- 2n'

Now fixation at time t can take place in {lN-\) mutually exclusive ways
. the A:"' way being that the initial gene frequency becomes A:/2iV in the first step andIhL fixItiL takes place in (^-1) steps. The probability of simultaneous reali

zation of these two independent events is Pik uj, (t 1). tlence

2^-1 s niN
Ui{t) '=' S PileUk(t—^)

/C=l

If we denote by W) and_H(0 the column vectors of Ui (0 and (/) respec
tively for i=1, ••i2N-1), we can write these relations as
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= QMf-2)

= (14)

Then

U{t) = 2 u(r) •
- r=l -

I

= 2 Q'-iP2N
r=/

='(I-Q0(I-Q)-^P2N (15)

The expression for U(t) is the same as P2n(0 given by (10) showing thereby that the
fixation probability by t"' generation can.alternatively be obtained by powering the
transition matrix P, t times.

Similarly, if_/(0 and_i(;) denote the corresponding vectors for the
fixation of gene a, we have

£(0=> 2 1(0
r=i~

^kfr-^Po ^ (16)

=(l-QO(i-Q)-^^o

which is the same as P^{t) in view of (9). Also ifJ^(0 denotes the vector of probabi-
litiiss that a population with gene frequency Xi of Ais still segregating for it by the

generation, we have

, (17)

~ ' whei^e e is a column vector of unities.

As i tends to infinity, we get
^ = £7(00) =(l-Q)-iP2N (18)

{,?£ L = i(co) = (I-Q)-i^, ^^ . , •• , (19)

W = j^oo) =0_ (20)

Thesedelations show,that ultimately the population is going to be fixed either for A
or for a with fixation probabilities given by (18) and (19).respectively.,
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We can now express (15) and (16) as

m = (21)

V ; - (22)

4. Expected Change in the Frequency of a Gene

Let the expected frequency of A by the generation be denoted by
E[qi (?)] when the initial population had its frequency as qi{o)=il2N. The expected
response in the gene frequency by "the t*'' generation is then

E[Rm-E[qm-(li(c): . , (23);

Let this be represented in vector notation by
E[R{t)]=Em]-q_^0) (24)

The expected gene frequency bythe t*'' generaifion, £[^<(0] canbeobtained
by finding the mean of the variate :Vj=;72N for the distribution given by the

row of P(/) i.e.

2N

E[qm = 2 Pdt)Xi • •
i=Q

2N-1= _^p«(0>^.+^/,2n(0

In- matrix notation, this means

£[£(0]=Q'i(O)+^(0
=Q«£(O)+y(0 (26)

in view of (10) and (15).

If Aqi denotes the response in the mean gene frequency due to the first
generation of selection i.e. the initial response,, we have

(H{0)+E{/Sqi)=E[qi{l)] ,
2iV-l

Pi,Xj+Pi,zn (2')
j=l

In matrix notations, we have

qJp)]-E{M)'='E[qJ})]
= Qt?(Q)+P2N

where Ei i^ q) is the vector of initial expected responses.
This can be manipulated to give

(I-Q)-i^-g(0)=(I-Q)-'^C^?)
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Then

£[^(0]=QW)+y(0-i(0)
= -(I-QOg(O) + (I- QO(I-Q)-^f2iV

=(i-Q0[(i-Q)-'p^-£(O)]

= (I-QO(I-Q)-^£(.Af) (30)

in view of (15) and (29). This shows that the expected response vector by the gene
ration is similar to probability fixation vector given by (15) with the difference that
P2Af i" (15) is replaced by E{lsq) in (30). It is also interesting to note that £'(A9)

and^P2N respectively the initial expected responses and initial step fixation pro-
.babilities.

. As r tends to infinity, we get

E{^=E[^cx,)-\ = {l-qy^EiM) (31)

£[^(0] =(I-QO£(^) (32)
which are similar to (18) and (21) respectively. In view of (29) and (18), we also
have

Em^u-qi^) (33)

This shows that the expected limit of response to selection can, otherwise, be
obtained by subtracting the initial gene frequency from the eventual probability of
fixation. But it must be noted that the expected response by the generation can
not, similarly, be obtained i. e. E [^z)] is not equal to ^(0 - ^(0) in view of (30).
When there is no selection, E{/Sq) = 0 and (31) and (33) give the expected result,
U=qJ^) i.e. there is no ultimate response, making the fixation probability of a gene
equal to its initial gene frequency.

5. Calculation of the probability of fixation and, the expected change in
the gene frequency

It is apparent from the above derivations that the probability of fixa
tion of a gene and the expected change in the gene frequency by a given number of
generations as well as in the limit can be obtained by performing matrix operations
on the transition matrix Q. However, before these operations, the transition pro
bability is to be specified with the help of the knowledge of the genetic situa
tion involved. Thereafter, matrix functions are to be evaluated either numerically
or by analytical methods, for a given population size. For instance, Narain (1969)
and Narain and Robertson (1969) used binomial transition probabilities for describ
ing the random sampling of gametes. In some cases they evaluated matrix functions
numerically on the computer for a given population size. In some cases, however,
the results were also obtained with the help of analytical techniques by using the
eigen-roots and eigen-vectors of Q. In this section we outline the analytical approach
which is applied to a genetic problem studied in the next section,
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Let the eigen-roots of Q, a /c XA: matrix, obtained by solving the character
istic equation

I Q-AI1 =0 (34)

be given by Also, let 3 and be the right and left
column vectors respectively corresponding to the root for j= 1, 2, ...k.
The spectral set of matrices for Q are therefore

/=1,2, .fc. (35)

Any function of Q, /(Q), can then be expressed as •

k

f(Q)

= S (36)

The formulae for calculating the probability of fixation and, the expected change in
the gene frequency are then given by

U = S (1-A)-^ P (37)
— i=J

[/(,) = s (i_V)^^'^ (38)
•*" l'=J

£(/?)= S ' (39)
/=/

^[^(01= (i-Ai03Z.'W)

6. Effect of linkage on the probability of fixation of a gamete
in selfed populations

The case ofselfed populations corresponds, in the above discussion, to
the situation when iV=l. The population gets subdivided into lines from each of
which two gametes are chosen to form one mature individual only. If we consider a
single locus with two alleles ^ and a, there would be three types of lines. Two of
these would have only homozygotes AA and aa respectively and each would occur •
with frequency 1/4. The third type would have only heterozygotes and would
occur with frequency 1/2. Itis obvious that the first two types correspond to the
absorbing states with frequency of 4 1and 0 respectively whereas the third type
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« S ta ^ "2- p. a=n

P =

1 0 0

0 1. 0 (41)
1/4 1/4 1/2

equal to 1/2. It is easy to ,e« that(18) and (21) give, for this case, the following results : easy to see that
Probability offixation ofAin the ]imit=i

Probability cf fixation of ^ by the generation =i(l—|')
(42)

(43)

there won,d^fforgailrfi'!, -pectively.there would be ten type^f fa Fo^otth „ P" =l>ose„,
respectively as AB/AB, AblAb, aBlaB and ablab The''. u ^oi"ozygotes

correspond to transient utatPQ i- i u spectiveJy and would alsoaffect the contributions of double heteri^^L^nTr Sw1 denote proJ?!'
ofcrossmg-over between two loci by r, with^=l-. the in Probability

thefoufLfo'/g^S

El
E.

Ea

E4
E5

Ee
E7

Es

E9

E,g

AB

1

0

0

0

1/2

1/2
0

0

s/2

r/2

Ab

0

1

0

0

1/2

0

1/2.
0.

r/2

s/2

aB ab

0 0

0 0

1 0

0 1

0 0

1/2. 0

0 1/2
1/2 1/2
r/2. s/2
s/2 r/2
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The P-matrix, then, takes the form

P =

1 0 0 0

0 1 0 0 9L
0 0 1 0 0'

0 0 0 1 9L

PAB PAb Pah Pai Q

(44)

In this matrix, 0^ is a 1x6 row vector of zeros, ^ab,

are 6 X 1 column vectors given by

p;^=(l/4, 1/4, 0, 0, s'l4, r'l4)
^=(1/4, 0, 1/4, 0, /•74, s'l4)

P'aB=iO, 1/4, 0, 1/4, r'l4, 3^4)

P'ab =(0, 0, 1/4, 1/4, r'l4)

Q=

Further, Q is a 6 x 6 matrix given by

1/2 0 0 0 0 0

0 1/2 0 0 0 0

0 0 1/2 0 0 0

0 0 0 1/2 0 0

rsl2 rsjl rsjl rsjl s^^jl r^jl
rsjl rsjl rsjl rsjl r^jl

(45)

(46)

(47)

(48)

(49)

The Q-matrix is found to yield the 6 roots X], ^a, h and Xj given by

: Xi=Aa=A3=>^4=l/2 ; (50)

\=(l-2rs)l2 (51)-

\=(l-2r)/2 (52)'
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The matrix Xof theright-hand column vectors Xi corresponding to \ for 3, 4,
5, 6, is derived from the results given by Puri (1968) and is given by

X=(a:i, Xa, Xg, Xi, Xj, Xs)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1/2 • 1/2 1/2 1/2 IIV2 MV2

1/2 1/2 1/2 1/2 l/v/2 -11V2

(53)

Similarly, the matrix Yof the left-hand row vectors y'i corresponding to the six
roots is given by

Y=(j^ A A y^'

1 0

o

O

O

0

0 1 0 0 0 0

0

o,
O

O

0

:—:

0 0 0 1 0 0

-IIV2 -\IV2 -IIV2 -\IV2 1/V2 1/V2

0 0 0.0' 1/^/2 —1/V2

With the help of vectors x,- and y'{, the spectral set of the matrices H;j /=1,2, 6
given by (35) are obtained. These matrices, together with the six-roots, provide
with the elements of the matrix (I—Q)~^ since

(I-Q)-i= s (l-?^,)-'H,
i=l

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

6 0 0 2 0 0

\-w \ — w 1 —w l-w , w-l-v w—

l-w \—w 1—vv l-w w-v w+

where H'=l/(l+2ra) and v=l/(l+2r).

(54)

(55)
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Ifthe vectors of probabilities of fixation of gametes AB, Ab, aB and ab are denoted
respectively by Uab, IL^U^ and ^ then, in view of (37) and (45) to (48),
we get

1/2 0 0 v/2 rv)' (56)

UAb =(1/2 0 1/2 0 rv r/2)' (57)

UaB =(0 1/2 0 1/2 rv v/2)' (58)

Uab =(0 . 0 1/2 1/2 v/2 rv)' (59)

It is confirmed from the above results that the linkage can only have its
effect when the population is initially either in state (coupling phase) or in state
Eio (repulsion phase). In each of these two situations, the probabilities of fixation
of the four types of gametes depend on the recombination fraction r, as shown by
the last two elements of each of the vectors given by (56)--(59). As expected, the
probability offixation of gametes is the same as thatofflZ). Similarly, the pro
bability of fixation of .4^? is the same as that o'l aB. The effect of linkage is to
increase the probability offixation ofa coupled gamete {^AB or aJi) if the initial
population consists of a double heterozygote in coupling phase. On the other hand
with repulsion phase the probability is reduced. For repulsion gametes {Ab or aB)^
the probability is increased when the initial population consists ofa double hetero
zygote in repulsion phase but decreased with coupling phase oflinkage.

7. Summary

A rigorous theory ofthe transition matrix approach for studying the
change in the frequency of a gene infinite populations is developed. The probability
of fixation of a gene and the expected change in the gene frequency by a given num
ber ofgenerations as well as in the limit are expressed as functions ofthe transition
probability matrix. The analytical as well as the numerical procedures for the
calculation of these quantities are outlined. The theory is applied to study the effect
oflinkage on the probability of fixation of a gamete in populations practising self-
fertilization. It is found that linkage increases or decreases the probability of fixa
tion ofa coupled gamete according as the initial population consists ofa coupling or
repulsion heterozygote respectively.
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